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The three-dimensional dynamical equations of the theory of elasticity for the bending of a plate are 

subjected to asymptotic analysis. Two dimensionless parameters (the exponents of variability and 

dynamism) characterizing the stress-strain state (SSS) of the plate are varied independently. The 

asymptotic behaviour of the SSS is established for different parameter values. Cases are found in which the 

equations of classical plate theory do not furnish a first asymptotic approximation of the equations of the 

theory of elasticity. 

THE EARLIEST attempts to construct a two-dimensional theory of plates [l], by asymptotic 
integration of the equations of the theory of elasticity, concentrated on the static problem. The 
characteristic feature of the static formulation is the presence of a small dimensionless parameter- 
the ratio of the plate thickness to the characteristic length of the strain pattern. In dynamics another 
small parameter arises-the ratio of the time required by a shear wave to cross the distance between 
the faces of the plate to the characteristic time scale of the processes being studied. Previous studies 
devoted to the asymptotic construction of a two-dimensional dynamical theory of plates have 
usually assumed some relationship between these two parameters [2]-an assumption that a priori 
restricts the range of surface loads that can be considered. 

An attempt will be made to develop a general two-parameter analysis of the dynamic bending of 
plates, on the assumption that the above-mentioned asymptotic parameters are independent. As 
will be shown, this considerably increases the number of possible asymptotic behaviour patterns for 
the SSS of the plate. 

1. STATEMENT OF THE PROBLEM 

The position of a point of the plate in three-dimensional space will be represented by a 
radius-vector R = r(d, x2) +x3n, where r is the radius-vector of the middle plane S, n is the unit 
vector of the normal to the plane, (xi, x2) are curvilinear coordinates on S, and x3 is the distance 
from S measured along the normal. Let a,e denote the metric tensor of the middle plane S 
(throughout, Greek indices may take values 1, 2), and let r# (i, j = 1, 2,3) be the stress tensor; the 
displacement vector u of the elastic medium will be written as u = u”r, + wn. 

The three-dimensional dynamical equations of the theory of elasticity will then be as follows: 
the equations of motion 

Va eQP + ao39 ax3 - pa2d/at2 = 0 

V,O 3a +a Yax3 -pa2qat2 =o 0.1) 
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the “stress-displacement” formulae 

EaW/aX3 = a33 - Y@flU~~ 

E(Va w + au,iaxY = 2( 1 + V)cl& u3h 

E%, = (1 + qu,p - vu,pPuAlr - va,p 23 

e&p = qvp, + V&p) 

(1.2) 

where V, is the symbol of covariant differentiation, p is the density of the plate material, E is 
Young’s modulus, and v is Poisson’s ratio. In addition, we impose the following conditions at the 
plate faces 

U331 x’=th 
=+ -Q3, u30 Ix+h =Q” (1.3) 

where Qa and Q3 are the tensors of the tangential and normal surface loads and 2h is the plate 
thickness. 

In (1.3) it is assumed that external forces are applied to both faces in such a way that the only 
possible SSS of the plate is antisymmetric with respect to the middle plane (bending SSS). More 
general external loads, other than bending SSSs, may produce SSSs that are symmetric with respect 
to the middle plane (SSS of extension and transverse compression). In this paper we shall not 
consider the asymptotic determination of the latter. 

We shall assume that the relative half-thickness of the plate n = h/R is small (R denotes the 
characteristic linear dimension in S). Following the scheme of the asymptotic method of [2, 31, we 
will assume that the independent variables are scaled as follows [c, = (Elp)l’*] 

X OL =Rqqta, x3 =Rq{. t =Rc,‘q”r (1.4) 

and that differentiation of any order with respect to the variables [“, 5, r does not alter the 
asymptotic order of the quantities in question. 

The numbers q and a in (1.4) are the exponents of variability and dynamism of the SSS, 
respectively. The exponent of variability characterizes the length of the strain pattern, and the 
exponent of dynamism characterizes the time rate at which the processes in question take place. 

We shall assume that q and u are independent, requiring only that they satisfy the inequalities 

U< 1, a<1 (1.5) 

which are necessary conditions for the existence of any two-dimensional plate theory. They imply 
that we are considering only SSSs in which the characteristic length of the strain pattern significantly 
exceeds the plate thickness and the characteristic time scale is much longer than the time required 
by a shear wave to cross the distance between the faces. 

The cases most frequently treated in the literature correspond to the following additional 
restrictions on the exponents q and a: a+ -m (statics), and a = 2q - 1 (free flexural vibrations). 
The class of surface loads defined by the condition a Q 2q - 1 was considered in detail in [2]. 

The asymptotic behaviour of the SSS depends essentially on the form of the surface load. We will 
first consider the case in which there is no tangential surface load. 

2. ASYMPTOTIC INTEGRATION (THE CASE Q-= 0) 

We introduce non-dimensional displacements and stresses 

w =Rw*, u, = Rq’ -qu; 

,,@ =Erl’ --zq-Cu@ * 9 
u30! =En2 --3q-C,% 

I 
23 +.,3--4q-bo33 

. 

(2.1) 

where b and c are numbers defined as follows: 
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b= 
0, a< 24-l 

2 + 2a -- 44, a>2q-1 

I O, a&q 
(24 

‘= I 2a-2q, a>q 

In addition, we shall assume that all quantities marked with an asterisk in (2.1) are of order O(nK) 
with the same K. Then formulae (2.1), (2.2) determine the asymptotic properties of the dynamical 
SSS of a plate in the bending process. 

The equilibrium equations (1.1) and “stress-displacement” formulae (1.2) may be rewritten as 
follows, taking (1.4) and (2.1) into account 

ao33/a~=Tb-cv;o~” +,,4q-2a-2+ba2W*/aT2 

aw*/aycq4--4q-bu,33 -w2-2q-caApu,h~ 

af&/ag=-V;W* +2(1 +V)qZ-2qqcaAau~h (2.3) 
O~‘=(l -yZ)-‘n’[(l -V)efP +vaQBah,etM’] +v(l -v)-1n2-2q+C-ba(2Pu~3 

e,$= ~(V;U: +V:u;) (v: =Rqqva) 

The operator 0:) and also the operators a/a[1, a/at2, do not change the asymptotic orders of the 
quantities being determined. 

Let us look more closely at the system of equations (2.3). The factors nX appearing in (2.3) 
determine the asymptotic order of the individual terms in the three-dimensional equations of the 
theory of elasticity. Table 1 lists the exponents x depending on the relationship between q and a. It 
can be ascertained that, if conditions (1.5) are satisfied, all the powers of n occurring explicitly in 
(2.3) have non-negative exponents. 

First let ad2q- 1. It can be shown that, to within an error 6i = O(V~-~~), terms in (2.3) 
corresponding to tangential forces of inertia, the variation of the flexure w with respect to thickness, 
shear deformation and Poisson’s ratio influence of the stress d3 on stresses a@ may all be ignored. 
Thus, to within 6i, all the assumptions underlying the classical theory of plate bending are valid. It 
should be noted that the error 6r is exactly that predicted by the general Kirchhoff-Love static 
theory of shells [3]. 

If a>q, one must, even for the most rough approximation, preserve in (2.3) terms corresponding 
to tangential forces of inertia and Poisson’s influence of d3 on the shear stresses @--the terms 
normally ignored in classical plate theory. When a 2 q, the asymptotically subsidiary terms in the 
system of equations are of order n2-2a (Table 1). 

The case 2q - 1 <a< q is intermediate. Here all the assumptions of the classical theory are 
satisfied, but the error O(n Zq-2n ) that they involve is greater than in statics. 

These arguments show that the error of the general dynamical theory of plate bending will depend 
on two parameters. For the asymptotic theory of the first approximation, this error will be 

62 = o($-24 +$-2a) (2.4) 

We will now integrate system (2.3) with respect to the transverse coordinate 5. It can be shown 

TABLET 

X a< Zq-I 2q-l< a4 q 
1 

a,q 

I I 

2q-2a+c 2q - 2a(>2 - 2q) 2q - 20 0 
4q-2a-2+b 4q - 20 - 2 0 0 
4-49-b 4 -4q 2 - 2a 2 -2a 
2-2q-c 2 -2q 2 - 2q 2 - 20 
2-2q+c-b 2 -2q 2q - 2a 0 
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immediately that there is a class of three-dimensional SSSs, represented by polynomials in 5 and 
described to within the error S, by Eqs (2.3) and the face conditions (1.3). This class is defined by 
formulae 

W* = w(O), 24: = fui’), e& = se::), afP = tu(“:: 

03P=03i3 
* 

(0) +c2$$ 
a33 - 

* -co(,) 33 t {3Qb-=o;;j (2.5) 

in which quantities denoted by an additional index in parentheses are functions of the variables &, 
&, 7 or, equivalently, x 1, x2, t, and are O(F) with the same K for all these quantities. They are 
related through the following equalities 

U(i) =_v;w(o) 
a , e$)= %(V~u~‘) t Vl+‘)) 

03P =_Q3P 
CO), (2)' 

d3 
(1)=--r) b-cv~o~,Q)+r14q-2n-2+ba2W(0)/a?2 

The dimensionless load Q”, does not exceed the quantities marked with an asterisk in (2.1) in 
order of magnitude [this follows from (2.1) and the face conditions (1.3)]. 

To verify this result, we substitute (2.5) and (2.6) into Eqs (2.3) and into the face conditions (1.3); 
we then omit quantitiesvf order S2 compared with unity throughout the calculations. 

3. ASYMPTOTIC INTEGRATION (THE CASE e"=O) 

Consider the case in which there is no normal surface load. The asymptotic behaviour of the SSS 
is described by the equalities 

w =Rw*, u, =Rvl -q--cub 0: (3.1) 
eaP ,Enl--zq-cOffP 

*, 
,,3Ct,E72-3q-b,,3CX 

* 

@33 =E 
fl 

3--4q-2CD33 
t 

As before, we assume that the exponents q and a obey inequalities (1.5) and the numbers b and c 
are defined by (2.2). 

Transforming independent variables in the three-dimensional equations of the theory of elasticity 
(1.1) (1.2) by f ormula (1.4) and using (3.1), we rewrite the equations as follows: 

a&/a{ = _o”-cv~o~P ++?--2Q+b-e&&ar2 

(3.2) 

It is obvious from (3.2) and Table 2 (which is analogous to Table 1) that the construction of a plate 
bending theory valid to within 8, must make allowance for the transverse shear deformation, but the 
tangential forces of inertia, the variation of deflection through the thickness of the plate and the 
Poisson’s ratio effect of d3 on a‘@ may be ignored. 
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TABLE 2 

X a< 24-l Zq-1 G a( q a>q 

I I I 

b-c 0 2+2a-4q 2 -2q 
2q -2a+b-c 2q - 20 (>2 - 2s) 2 -2q 2 - 2a 
b -2c 0 ,2 + 2a - 4q 2 - La 
4q-2a-2+b 4q - 2Cl - 2 0 0 
4-4q-2c 4 -4q 4 -4q 4 -4a 
2-24-c 2 -2q 2 - 2q 2 - 20 
2-2q+c-b 2 -2q 2q - 20 0 

It can be verified that, to within 15.2, system (3.2) has solutions in which the quantities marked with 
an asterisk in (3.1) satisfy the following equalities 

W * =w(o), u; +p, gp =r$) 

@P - 
I -q~,. * u3@ = cJ;op, t p?p-cog (3.3) 

e33 - 
l - se;‘:, + c3 $3)) 

which define the variation of the required SSS as a function of the thickness variable 5. Quantities 
denoted in (3.3) by added indices in parentheses depend only on tl, p, Tand are related through the 
formulae 

u(‘) =-ncv;w 

,Fi) = “(V&, 

(0) t2(1 t y)$-2q+c--b~ha0;;) 

aP 
(‘) t V&$‘)) 

u$, =(I - v2)-‘[(l - y)e$) +uauPOh,e$)] 

cJ$ = -?4 v’ rJ@ 
(y (1) 

u;;, =n2c-b[-v;u:;) t174q--Za--2+ba2w(0)/a72] 

~93, =-5;~c~~~~~~t~~~~~~-~~+ca~~(~)/a72 

(93 to33 =() 
(1) (3) ’ U(“o) tt) 

b-c,3f3 _ P 
(2) -Q* 

(Qt =E-‘$4-2+bQP, ,(2) = __xva + ) 

0 (1) 

(3.4) 

4. THE TWO-DIMENSIONAL EQUATIONS IN TERMS OF FORCES AND MOMENTS 

We shall derive the two-dimensional equations describing the bending of the plate, in terms of the 
tensor of moments M @, the tensor of transverse shear forces Na and the flexure of the middle plane 
W. These quantities are defined as follows: 

h 
w=w(x)=o, fw@= J uQ%3dx3, NO = ; u3fldx3 

-h -h 
(4.1) 

Using the formulae of Sets 2 and 3 and transforming, we obtain equations in terms of W, M @, N” 
for the cases Qa = 0 and Q3 = 0. Combining these equations so as to retain all terms corresponding 
to each of these cases, and ignoring quantities of order S2, we obtain: 

the “moment-flexure” relation 

MN3 =- 2Eh3 

3(1 42) 
[(l -v)V”VpW +va‘@AW] 

2v 
+ ; h3[V”Qp tVflQ” t - 

1 -v 
a‘@VhQ”l + 

+ 
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Y 
+ 1h2- 

3 1 -v 
a”lpQ3 (A=a %vJ (4.2) 

the equations of motion 

A,MQP - Np + 2hQP +2/3ph3VPa2 W/at’ = 0 

VaNQ t 2Q3 - 2pha2W/at2 =0 (4.3) 

These equations differ from those of classical plate theory in that formulae (4.2) include terms that 
depend on the surface loads Qa and Q3; in addition, the moment equation of motion (4.3) contains 
an inertial term. To within &, we can apply the following change of variables in the equation: 

2/3ph3VPa2 W/at’ j %h2VPQ3 

Situations in which these “non-classical” terms become asymptotically significant may be 
described using the arguments of Sets 2 and 3. 

Expressing the transverse shear forces and moments in the equations of motion in terms of Wand 
dropping terms of order S, , we obtain the resolvent equation of classical plate theory: 

%(l - 3)-‘Eh3A2 W + 2pha2 W/at2 = 2Q3 + 2hVhQ” (4.4) 

Note that if the condition 1 Q3 + hV,, Q*le 1 Q3 1 is satisfied, the relative asymptotic order of the 
flexure may be less than dictated by the asymptotic formulae (2.1) and (3.1). For example, it may 
happen that W-U,. SSSs possessing the above asymptotic forms are characteristic for plates with 
non-classical boundary conditions on the faces [4,5]. 
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